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INTRODUCTION

The need for weight saving in a cylindrical or conical missile body
section has resulted in the use of ring stiffeners and axial stiffeners to
insure structural integrity and stability.. This need has also resulted in the
development of single-faced or double faced corrugated construction and in
the use of ribbed stiffened monolithic structures fabricated by milling.

A circular conical shell manufactured as mentioned above can be
considered by representing it by an equivalent orthotropic shell. The
general Donnell type instability differential equation for such a shell can be
determined by an energy analysis similar to the procedure used in Refer-
ence (1) for an orthotropic cylindrical shell.

, In the present paper a set of instability equilibrium equations for an
orthotropic circular conical shell are derived by applying variational
methods to the expression for the total energy of the shell. From these equi-

librium equations an eighth order differential equation of the Donnell type is

‘obtained for a circular conical shell segment of uniform thickness subjected

to an external hydrostatic pressure and a compressive axial force.

*Professor of Engineering Mechanics, University of Alabama, University, Ala,

++Associate Professor of Aerospace Engineering, University of Alabama.
University, Alabama '



STRESS-STRAIN RELATIONS

F'S i

The circular conical shell geometry is shown in Figure (1) together
with the coordinate system used and the corresponding middle-surface
displacements. In terms of the shell middle-surface displacements, L ,
V~ , and w-, the expressions used for the buckling strains in the shell wall

are written as follows:

a
Css = U;s "l’(%\)[ La(vraw® 4 Uy V): + W):] '15‘ [\/ VistWWe)- 2W g
Ceo = JS'[UL- V,e we = —W ot "]*(“""/S‘X‘Ml;e -~ WW ooy & -'\/)e Week *}
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where €5y , ¢ , and @g¢, are the generatrix, circumferential, and shear
strains, respectively; and a comma indicates differentiation with respect to
the succeeding variables.

For a homogenous orthotropic material, the stress-strain relations

in generalized plane stress can be written as



Tue = E:(e«ss'f'%&seoo) o= E (eqo"-‘)eses)
T e ST

Jse = G'csg (&)

In the above equations £ and g are the values of the moduli of elas-
ticity averaged over the thickness in the generatrix and circumferential di-
rections, respectively; & is the average shear modulus, and “L)seand _Dos
are Poisson's ratios.

For convenience in later calculations, the following constants and

notations, similar to those given in Reference (1), are introduced:

= Es h . = Ee h =
I Sy Dos A=z Vso Vos <37 ch
3 3
D= Es l‘ E “\ = ___G'\”'
! Ia\(l - "9:9'\)05) Da, l&(l.- Vso "\)es) Ds Y3 (3)

where 14 is the thickness of the shell. The following stress resultants are

also defined:

oo,
N =j_:q=,s da ;‘,e.=g*”‘~’0,;‘ Az  Nsg= {_;5:“ b=

Based on Maxwell's reciprocal theorem, the following relationship

must hold between the elastic constants:

Vs Ves



STRAIN ENERGY AND TOTAL ENERGY EXPRESSIONS

The instability differential equations of equilibrium will be derived
using the same procedure as given in Reference (1). For an elastic system, a
criterion of buckling is that the variationof the change in theenergy of the system
due to buckling, with respect to the displacements, must be zero. Described

mathematically, this criterion:becomes

S(u+Vv) = o @

where TX is the change in the strain energy of the shell and V is the change
in the potential energy of the external forces during the buckling process.

If initial bending stresses are neglected

v =£f[( oy €t Goe o0 * Tro Cs0) +{(TorCuet Tn €0 +G§e€s9§] Vs
s G
In the preceding expression O%s a’-” , and Ggg are the membrane stresses
existing in the shell in the compressed but unbuckled state; gy, , Jse , and
Use are the stresses superimposed during the buckling process, and Vg
is the volume of the shell wall.
~ For a circular cone frustum with an applied hydrostatic pressure

and an axial compressive force § , the following membrane stresses, ob-

tained from References (3) and (4), are used in this analysis:

Nss _ - PS t«*«% - Q
= TS sin e

Nee = —PS ten X

Neg = O @



The preceding expressions are based on the assumptions that the boundary
conditions, such as ring-stiffened edges, do not permit pre-buckling bend-
ing or shear stresses to exist.

Based on the preceding limitations and assumptions the change in the

potential energy of the external forces during the buckling process is:

Vv ‘i, pdVe - T“L o SW] aie < de )
s © S |

where .\7;_ is the volume enclosed by the shell and &, and So are the
boundary values of & for circular cone frustum. The first integral in the
preceding expression, which is the pressure times the shell volume change,
is the work done by the hydrostatic pressure P . The second integral is
the work done by the stress resultants in the generatrix direction as a
result of the boundary displacements at the edges of the cone frustum during
the buckling process.

From the geometry of the shell the following relations are obtained:

dVi = Sax dods dz dAs - S-A;.,\ o do ds (o)

where A5 is the area of the middle surface of the shell.
By combining Equations (2), (4), (5), (7), (9), and (10), the expres-

sion for the total energy <X+ V can be written as follows:

So =R _ _ _
WV = g S [(Nss €55 + Nes Zes * Nso f’-ssis%o(}] do ds
S o
° V; Se 3T
G e (B st

+2VpEs @35 €ee + G 30 J[[S 2iaax]do ds I
M So )
= - I
SV—S Pdvc g; [N $8 qul LM" °<] 6\9 ( )
Also from the geometry of the shell the following expression is ob-

tained for the work done by the hydrostatic pressure:
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3 In the preceding expression and in the succeeding development the terms
involving the displacement V are considered negligible and are omitted.
By substituting Equations (1), (3), (5), (8), and (12) into Equation
(11), and retaining only terms up to the second order, the following expres-
l sion for the total energy X +V is obtained in terms of the displacements

. ,N W , and their derivatives:

w+V = 4 S:"' S:.“ { [su}sin +1‘0,,(\&\Ms'bl'\°< +UgV e =y Wﬂ?""i‘
+ 3¢ [W sin o 42UV, o T AUWeosw + V)6 Sec ~ AV, Wk X
“W™ s o eillm ]+ W [UR o ALV +RSK o\ g ¢V EIN
! ~SS Vg Vsn & 4+ 52WV,3 sin] + 9% L 5™ Wi, Sins + Q75 W gqW go e
+QVgx S,W, W, g4 ;(“.{] + D3 [sa w”g Sina + AS Wy W oo csc &
+M,:° <sax] + 4'DV,$ [S‘ W,se S1i =35 W)se W,e esL = 4 W>3 Ub"{]
+ B4 Lo Wrink - 3w sint sece = b SV glaw o= 43 Wg M SR
~FW sV Secx ~HSUK g sint R SeUX = ASW, 3 V,e tam o
’SU.V,.*AM.'( +10UWs (e + s W Wsin & ~AV?® sinda secx
+4sVVg sintsecx 8 Vg W = Bwrensa —4W st ¢ sece
+ NSW Wg S(nPeg Secex - 1(3‘5"\"‘ SQC*XU‘?.S +V,3 *W;?B
-3 sec~ ( Wy + \I)‘e + w\;‘)] -(Q sec ,(/m-%[é (ve+niqs? wr
+ 2V AW I) st - sy \,,g'_;i-aagiww,sj} dods
‘\'t_S:mC?s‘ wEin < Sec~ + %‘, Q. secs .];" de (\5)
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EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS RE-
SULTING FROM THE APPLICATION OF VARIATIONAL PROCEDURES
The following expression for the variation in the total energy is

obtained from Equation (13):

du+v)= S: S?{[«. (Vos Yys sina) + 0% (Wain o + Vg =W coned) + TA(5Watnes
—4V, g Tamx =S U SINe( sec ~AS Wy Sints secq)] Sw
+[x(SU sinect \)“v\s‘wx + Vs Yo O.swws«) - Yw(Qns 3“-"‘)
5 (sec o )(2S Wsin s cosag— ASW Sl — Vg SO —~2S W 5 sin'ey)] SWhy
+[°<ys (ueesca=V + Sv,s) - "/;(3 uwgc_.()] Sue + E“s/s (Vst'\e( - %0
~SV¥,q Sin -<)+( psec s‘m‘.(Xs Vs =V) -Q SeR "/ szX\/-— s \/“>] Sv
4[‘(3(u)°~ Veine + SV, som)-t— ( pyecw sm‘-()(s\/ ~-s® V,gb
~@ secns X SV = V)] §V,5 + Do (Fps Wy3) + % (w4 Yy csex
-w cét oq + 91(4\”—5 U Tam = 4 W tam « -3V,e sec °()] S Ve
+ 1, ("")es Wy Cos-g'f' ‘fég(\h/cos’x csew ~WUcose ~ Ve u’t’(\
~+ B4 (SUsing 425U 5 sinad +4 Vg +3 Wess X + YWsin* o« sec x
+aASW;s sin*x "€C°<) (Q sec Hnd ("" v"“ﬂ g\/\/
+[D, (Vo5 Wyqs 5inX) + Dia(swig s+ Woyg C3e) + (stec.ng s(n‘«)
(sw- S""‘W,s) - @SQC"/S«&X S W, W}] $ W
+[(aDy =3¢ %SX AW, e —2ATW se> (e “‘""X\B Ws 9)] ) We
+[ D% (5‘- W,es Sine + '\)ss S Wy su\x+-0°s W o0 csc.q)-_\ S Wss
[(4pyesea) SWise ~We)] S W54 + [(D c3c% Vg W 4s)
'+Q>g c.sc"/s'sx SWig+W, g9 <ac .d] QW “‘} do §s
+~i5 [ ps? sin’™ see~+ W(Qsec-«\] Su 48 (1)

Integration of Equation (14) by parts results in the following

expression:




S(u+v)= f“ S {[* (=Ug sine = SW o sina=TVgg \<QS¢1) W oos k)
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T4Shis TR seca + A Wy IR See X +3 U0 Sec ~ 3V, 0 Tanm
TSV gstan X + 3WSna = RIW,s 5(n ) +@se<, o sm { Myss) ] Su-
+- % Ves Wyse) - % (Ue 1V ge 3 - W, g it ) — =3/5(% 0t SW o5
Vsin 43V 3N+ 5 Vs 3na) + (4% 0 tam s+ SW setam
-} SNt SeC 44 S Vg st Secw +2S V ss MR SeCN +3V,°esec-\~0,w)e)
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YAW, g0 exxXT Wiggo, csc.-g)-l-Qt'D's/s%XvJ)e& -5 w, sog * Sa\'\l’“,g csco
-\(& Sec “‘11) 533 Sw } A0 As
+ S.m {fc( (SW,g s + Vg USin "'-"es 'Usswcos ek)
+(,Q(-’ASV\ St secx ~2ASTUs sint < sec o -3V gTam
+ASW Sinx + SY sinx Svec,a() ~-(a sec-",‘{:nx U\)s"):lé\k—
-+ [e(3 (Ux,'@~ Vems ¥ S\I)s Sin «) + ( PS sint e} se_c.-(XV- SV,;}
~(@seen/ags )G Vs~ VT) SV 4 [0 -3 Wgs wins
+ Vs Wigs 3~ W go¢ vinx =5 VggW 5 0¢ SQC--(B
+)(SW,5 sin% + W, 00 sc<:°<)+(4'b3/s“xcsc %X\/J,,, - S W, oe)
+(?s sxnlxsec«Xw—sw,sy-(q SQLX'NSX"\" SvJJsﬂ S W .
+L DAY S Wss sine+ Vgs SWig sins + V5 Wig g cscdﬂ&w,,} &
+§ f['(o(,/sx W S3CX -V + Sy, ) (P/; ('w,, S‘ecx)] Sw
+[_'_o<, (Vesthg) ¥ (<=/qu+ V,p csea ~wegt o) ~(PAY dhtam o
4 SUs tmat 3V g sRce(— L\W)] SV 4&13./: ‘V s Wsse ‘-3“")
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The changes in the total energy of the cone must vanish for any ar-
bitrary virtual displacements when the system is in equilibrium. As a result

the following three equations of equilibrium are obtained from Equation (15):

(°<\/S )[( SMg ts* \*)5315"""‘) "‘—\)es (:V;es - was cos ’Qﬂ
§(°(;/S\KU\S‘U\°( +V\8~WCOS°(>+ %3/5)[u)©9 e ~ 9+ S ‘@]
'+(P/1)[( 3T 4SU -as? \&13,1?0\‘-( sec.-& 34, g0s8C

+( 3V o~ SUgs [ tam =) BW-2W Y5t )] ~Qrec oY Ui ] = © (16)

(/) Vs Sse | = (Y554 V00 S5 = Whyp st &)

~63/5) [Uo + SU, +(~V4 S5V + S*V 55) sinec]

P[4, o + S U se) tan o + (5inix sec=)(~4V+ISVs 4+ A3V g5
+3V,ep 3T X~ Y w,s)‘_\ BN (Q sec “’/,3.3[\/)5;)
+(Q sec /A sk)[av— ASV, + 5™V ] =0 (1)

(==/s )(-\)(93 SU, cos c<) ~ (/s CoS‘(XLH- Vo Sine — Weos« c1co)
+(f/1)[(stv\-<)( SUW+aSUyg) 44V e+(stn’~°< seca)(3W + BW erT X e o |
+4SW AW +3W st )]+ (D. /s3X<s;=o<)[_a'l)e,W,.‘
+AS% Wgas S = AV S Wggs + LVas S* W pegs + SH W os site]
+(ba/53X:sc-()[ SW3 st = M Wgr TNt £ AW, 40 + W, 9,“]
+HyDs /53X e =)W, 5 ~SWsee* S *Wisee ]+ (Q3ec)[ W, ss] =0

(8)

In addition to the three equations of equilibrium, the following natu-

ral boundary conditions are also obtained from Equation (15):
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o, (S U sine + Vg Wsineg + Vgg V,e‘_‘)es W cog a() —(p Sec XX;S\L sinta¢
+s? “\.s"m:“ + SVgsihe -AIWigne - s> sm‘.()

+(Q sec "Y/&‘WX'- u,s)]? =0 or: S\Q:G (o] (\q 0.)

%
(xa/s {Uye csca =SV )-(P)3 4 sece()]o =0
er: Ju.lﬂ =0 “q \a)

&3 ( U~ Vsin +3 Vg s'mx)-b-( PS sino( S€C «Xv- S\/,,)

-I-(Q sec “A15>(v— 5\/)‘) :E: =D or: 5\/]:‘ o . (H ‘)
o, (Vs Ws) + (oeas/s )+ Vw“““"w"".’t")' Q’/‘X*“tﬁ'« F St tan
+3Y 6 secq—4w]:“ =0 ot Sv :“ao (gd)

.(D,/S‘X"S’“W,s: sihs + ‘Vos W,gp COSX = stus: sne — S‘l)°s W, sec e()

)0es
+(Da/sY W5 sink + Wy sec &)+ (4Ds/37 3 e W gp ~SWgpg)
+(pS sirt seca) w=3Ws ) +(@3ec U )(W-Sws) [ =0

or! Sw__\:’ = 0 (19 e)
o} /SX_-\)QS Wsse ¢ v) +('D‘/5"X5"")se Cseol + Wigee "“'3")
-%Di/s‘xc“'“ste S W t SaW,;;g)'Q’/{ﬂS\N\’sec o()T:‘ =0

ot SwlT =0 (9 9)

. N SQ
(Da /X3 Wgs SN + Vg SWis 3N 4 Vg W g <8¢ q)]m =9

or ! Sw,,]:“’ -0 (199)
(e /sy\‘\)‘9s W g5 csc o«)-t-('D;/S’X SW)s S + W, 4 csed «)]:‘ =0
o §w,e]:“ =0 (19 W)
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A PARTICULAR SOLUTION FOR THE EQUILIBRIUM EQUATIONS AND THE
DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION

For convenience the constants in the equilibrium equations are ex-
pressed in a non-dimensional form; and, as a result, Equations (16), (17),

and (18) are written in the following manner:

(@.(S/s.) + G J(WS) + (@3 + e (S/S0)] (tys)
+ s (5/5) + Q¢ + @,(5/5.)](S,s5) + [Be(5/s.) +2g ] (Uyee /'S)

1[G, (5/50) +a0 ] (Ve /S) + (212 + @r3(S/5:)] (V,ss) (22
+ 0w (5/5e) +0uis](W/s) + [Gye + G (S/s)](Ws) =0

[3,(s/s0) + b2 ](u,0/5) + Loz 4 by(S5/50)U,s0) +[bs(S/s6) 4 b¢ ] (v/S)

t+ [_27 {-68 (S/So):](vls) +L‘b9 (So/s) - 610 $bn (5/.5,)__7(5\/,5;) (21)

+b12(5/5:) +bi3 ](V,00/S)+ b, (S/50) +bis J(W, 4 /S) =0

[Ci+ Ca(S/50d(u/s) +[T3 + Cq (5/5:) T (s ) 4T+ Ce(S/5 J(Voe/S)
+C7(5/Se)+ Co1(w/s) +[Ty(S/50) + i (2,/9) "1 (W, g)

HC 1 (S+/5) + Ca(5/50) #Ci3(Se/3)*](SWss) +[Cia(S/50) + Cis (Se/S) 2] (W,00/5) (22
(5182 1(5%W, ss5) +[C17(50/5)*] (W, s08) +[Tis (50/5)2](5’% ssss)
+0214(50/3)7] (SWys500) +[Cos (So/5)*1(W, 6606 /S) = 0

@ = -(3p Sopum U f2u4, cnsk)  Ar=(lafel) Bim o

43 =~ g o ba = (2PSo gim® e )/ (1 toaot)
Og=(0)(2mrS, 1 o o) e = -o0m ok

47 = (P S0 pim 2 )X Cra ) Gg = (3PV)/ (2 tya o)

Gg =~(3)/ G en A) . Qio =~(3P Sodim 2 )/ (2, @
an = (ot +43) /() Gorzz- (% Yos +o¢3) /(1)

Gz =(PSe Lan ) (2o4) | Cig =(3PS000m %) (2o(,)

Gis=-(d2 L o)/(¢) Qi = Vos (o A

Q1 =-(PSo pum )/ () |
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b= (2pse Zama)/ ()
by = ~(Wesot, 1ok3)/ (<))
bs = ~(2P So 0o oL )f (K1 tr k)

b = '(o(z +o(3)/(°(,)
by = (PSolan)/(2o,)
b =(K3 pem o )f (X.)

by = = (3 @ent) /() be= (2pS0 0in)/l, Cooot) (23)
bg = (Q)(2Se 1 Caet) bio = (A3 pen o)/ ()
bu = (PSo sainal)f (i con &) b = (3pca)/(24, troat)
biz = =) /(41 faem &) b= -(2ps.)/(=t)
bis = (A2 C/fa()/(dl)
¢ ==(ola Loret) /(1) Ce= (5pSo pauum ok J(2,)
C2=-Ves skt Co =(PSo e /()
Cs = ~(dx et )/ () Ce =(2pSa)/(A.)
(7= (3P Se o’ 42 pSegintsdlflesitnct)  Cg= (e co®ot)/ (s pim o)
Cq= (2PSe pen* A )\ coaet) Ceo =(h*D, em ot )12 53 D,) (2
Co = (Q)/(217Ss %) trant) Crr Z(PSe sintd (s Cort)
Ci3 = - (A*Dy pimnt ) (125.°D,) Cia = (3p5.)/ (20, ton ot )
Cis=(2h™es D. +2h*D2 +4820)/(125E D1 oo )
Cio 2(2h%aem L)/ (125.7)
Crp=-(2%sh®D: + 46™03) /(12 55 D1 ain o)
Cig = (A ina )/ (12 54
Ca=(2Yesh®D: + #4 LD,_)/(/z 50Dy atm &)
Cao = (A DI/ (12 58 D0 sin 3)
Equations (19a) through (19h) are written in the following manner so that the
natural boundary conditions are also expressed in a non-dimensional form.
B2 + 02 )(5/5) ] HB20 (5/5.) -2 21 (5/50) * /S )
HE a4 R23(Sho)+ Qua (57500 (U, ) Hors (5/50) + Aae (5/50)* 1 (V, /5 ) (Pa)

+[a27(5/5e) + Gze (s/s.)’j(w/s)}j =0



Cazq (5/5)1(t,6/5) +lzo+ Q31 (5/5+) 4 sz (5/S:)* ] (v/S)
~[A30 + Q21 (5/5:) + 432 (5/5S6) _7(\/,5)}s =0

[Q33 + 034(5/50)2,7(“//5) + [ii3s (S0 /5J] (Mao/s)
R3¢ (Sofs) + A + d3g(s/s0)*1(W,5) +[&39(50/5)J (W,0es)
4 [Rag (56/5)](5W, s5) + [Ba; (S0/5)](S*W, sss)} =0

by (N,66/S) + Qaz(w,s) + Aag (B W, ss)} = Afd
[6;0 + ba (5/50)](“;0./5) + bex (V/S) ¢ b23 /V, 5)} ;'—T.O

EbM + bzs (S/Sa)j (“/5) + Ebzr. tbae (S/SO)J(VJO/S)
+(bag +b2a (5/5:)] (W/5) +[Bzs+ b3y (5/50}_7(01, s) }lfr: 0

[b52(50/9)* + b33 (5/50)](W,6 /S) + [B3a(So/5) J(w, 066/ 5)
4[535 (50/5)](W/SO)'lEJG(So/.S)&J(SW 55‘)} =0

(19¢)

(19e)

(123

(196)

(194d)

(19¢)

[b37 (50/8)*1(W,00/S) +[Bza (5:/5)*1(Ws) + [b3a(Se/s)?](5e/s) 1 (SV, a)}-o (19h)

where
220 = Yos au=(rs.za».<)/(u.)
da =(Qatca tocd)f (2TiA, So) Gas = |
Ay = (P So Zan oL)f(L1) das = Ves toc o
Gae = (P So ame &)/ (241) dzq T -us &l L
Gae = (PSa)/ (L) Gz = (L3 poe 2J/CL.)
Az0 = (Q e oA coch) /(211 5:,) G4z = -(A3)/CL,)
Gs2 = (P Se Zam )/ () b33 =(Qraieol ) (2TTS0A )

ls = (P Soaint o rated) /(L)

G3s 2(h*YesD, ert~ + h*Dr 4 4h*D3 cocat tonot) it So D1 ool )
bse =(A2Dz mend)/(12D,5,5) An :’(-cho()/(zn'sod,)
t3g = ~(PSoamiet e <) /(L)
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dza= (A2 D Yos pic A + 44 D3 tocot)/ (1258 D.)

Rao = (A gimsd) [(12 Se*) A1 = ~(h Soumat )/ (12 So*)
Gear = Yos CLoc Ga3=Yos Ben & Oas = /2on oA

bao = (o3 cacat) /(o) bai = - (3P Somse o)/ (22)

baa = = (Aa /ot ) baz= (A3feL.)

baa = Ao ol bas = -(2PSo Aot ) /(1)

bae =(e coe ot )/(3)  bar =~ (3pSs pec o ) (29L)

bag = = (s e 2D/ (1)  ban = (29Sa)/(L1) (24)
630 Ves b3 =-(pSo Zorst) [ (2o4))

b3z = ~(D3h™ tac L) /(354 D)) ba = ~(3PS.)/(2.)

bre = (Drhcac34) /(1254 D) T bas=[Dht+ 4 D,A‘}ocdj/(lz&’&)
b = ~(Yesh™D: Coc o + ¢ h2Ds toc L )/(125:2D.)

bz =(Dr cae®A)/ (D)) bas =(Dx coc &) /(D))

b3a = Ves toc o

Let S, be designated as the value of S at the base of the cone
frustum. Then a non-dimensional coordinate in the generatrix direction is

defined in the following manner:

=_ 5
5=-=2 (25)

Equations (16), (17), and (18) can be reduced to ordinary differential equations

by making the following substitutions:

lA:SoF Jrn né (26)
V = SoG Coe né 27
W =G8:H omné (28)

In the preceding expressions 7 is an integer and represents the number of

buckling waves in the circumferential direction; and F , é , and Fl are

non-dimensional functions of § .
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After the substitution of Equations (25) to (28) into Equations (20),
(21), and (22) and after all the indicated operations have been performed, the

following differential equations in F G , and A result:

Bz - agn?)/(3) +(a, —Q,ni)] F+ [l3+645] ;‘{-Lg
+[As+a,5 +a 's"'J }/-:!: ~[a.n/(S)+ation] G
- [oan +6,3n3] $E + Qas)/3) + 0] F
+low + an 5] Jg =0

9

ﬂ:zn)/(g) +Am] F +163n + ben _5_.7 :{5
+Lbe =b;3n*)/(3) +(bs - A,mL)J G+t +56,5] 42 (30)
+/5, /-6;05+bu$zj +£(6,sn)/(s) t biyn]R =0

e + I F # B3+ o514 - esn)/(5) #nc I &
+LCaan* - Csn*)/(3Y +(E)[(5) + C7 -Gon* T F 31
+CCis —cnn‘)/('é‘)»%«;?] ;‘g H{Ci3-Can D/ (5) +C m;s‘_’)d :
- TH

+CE¢'] ds, + L[5 ] é-g., =0

It is easily seen that the functions assumed in Equations (26), (27),
and (28) satisfy the boundary conditions given by Equations (19b), (19d), (191),
and (19h). The substitution of Equations (26), (27), and (28) into Equations

(192), (19¢c), (19e), and (19g) results in the following expressions for the

natural boundary conditions that contain only the dimensionless coordinate

d

U*ll'm

(ao +025%) 4 (420 240 3)F #(~tan 43S + 4y 52) 5

-—\ — -—y - Se (32)
~(nbrs +NAS)E +(an ‘“"S)Hjs. =

Se

(Hﬁzq)?‘ (dgo/g + Q3 45(31-5_)5*'(&34 143:3 +&32§z) fg—'}s =0 @3)

[(az3/3) -n*hzs + ase SR +{ay -G )5 +4s1+ A3 5 0 ¢4 4T (34
*Eaﬂgzj 4_—:1 f‘l:aq.lsj ds;} =0

S
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— h N SQ
)/ (5]1F -[ass] 4 - [20e 8] L} = o 65)

After very lengthy mathematical manipulations, Equations (29), (30),
and (31) can be reduced to the following Donnell-type eithth order differential

equation in terms of the function

(=8 j=/+23 (=% ;=l423
N E - i dE E § i A
: —!: S5 dsi TIJ S dS‘ - O (36)
(=0 J=i-39 =7  j=zdtas
where the are constants that are functions of the stiffness coefficients

A. » d= » and oz, the rigidity coefficients D, , p, , and D3 , the apex
angle ot , the applied pressure P , and the axial load @ .

Because the constant coefficients, T, , are extremely long, they
are included in a separate appendix. This appendix can be obtained by writing

to the Bureau of Engineering Research, P.O. Box 6162, University, Alabama.

CONCLUSION

At first glance it would seem to require a prohibitive amount of
time to obtain practical results from vKuation (36). The use of a high speed
digital computer and the application of an approximate method, such as the
Galerkin method employed in Reference (5), could possibly yield meaningful
practical results in a reasonable amount of time when such results are highly
desirable. A solution of the type suggested in Reference (6) might also
prove feasible.

The effort of this paper clearly shows the great mathematical diffi-
culty posed by the problem of the determination of the instability criteria for
a stiffened cone frustum subjected to a combination of loads. In connection
with this problem, and the problem posed in Reference (2), a very serious
need exists for the mathematical investigation of the solution of an eighth
order linear homogenous differential equation with variable coefficients and
the determination of the physical instability criteria represented by such an

equation.
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NOTATION

a., b, (., fc.Constants that are functions of the exten-

As
DO, Dz, D3

Ess ,Cee , Cos

Es,EO

P
R
5,6,%2
So, S
3
wW,v,w
U
%

sional and shear stiffnesses, the bending
and twist rigidities, the applied pressure,
and the axial load.

Area of the middle surface of the shell

Bending and twist rigidities of an ele-

mental area of an orthotropic circular

conical shell

Generatrix, circumferential and shearing
strain

Moduli of elasticity for orthotropic circu-
lar conical shell

Functions of the non-dimensional coordi-
nate in the generatrix direction

Shear modulus for orthotropic circular
conical shell

Wall thickness of circular conical shell

Integer that indicates buckled mode in the
circumferential direction

Generatrix, circumferential and shear
stress resultants per unit length

Radial or hydrostatic pressure
Axial compressive load

Generatrix, circumferential and radial
coordinates of cone middle surface

Generatrix coordinates of the base and the
top of circular cone frustum

Non-dimensional coordinate in the genera-
trix direction

Generatrix, circumferential and radial
displacements of cone middle surface

Change in the strain energy of the shell
during the buckling process

Change in the potential energy of the ex-
ternal forces during the buckling process
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Ve Volume enclosed by the shell
Vs Volume of the shell wall
24 Apex angle of cone or cone frustum extended

k., k1, Az Extensional and shearing stiffnesses of
orthotropic conical shell

Vso , Ves Poisson's ratios for orthotropic shell

5‘-“’%15’-“’0:”5‘;5' gps Generatrix, circumferential and shearing
stresses
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